

MITUS GNSS Plugin

USER MANUAL

Mirus GNSS Plugin User Manual

Copyright © February 2025 HarvestMaster. All rights reserved.

Part number: 31536-02

Trademarks

Mirus and the HarvestMaster logo are trademarks of Juniper Systems, Inc. GrainGage is a trademark of Juniper Systems, inc. All other marks and names mentioned herein may be trademarks of their respective companies.

Disclaimer

Information is subject to change without notice.

Cautions

A CAUTION: This symbol indicates that failure to follow directions could result in damage to equipment or loss of information.

HarvestMaster Logan, Utah, USA Phone: 435.753.1881 Email: agriculturesales@junipersys.com www.harvestmaster.com HarvestMaster Europe, Wels, Austria Phone: +43 7242219333 Email: office@harvestmaster.eu www.harvestmaster.eu

Contents

1 Install the GNSS Plugin	
1.1 Requirements for GNSS Plugin 2.1.1 or Later	5
1.2 Activate the GNSS Plugin	5
1.3 Connect Your Receiver	6
1.4 Connect the GNSS Plugin	6
1.4.1 Add the GNSS Plugin to Mirus as an Attachment	7
1.4.2 Add the GNSS Plugin to Mirus as a Device	9
2 Adjust GNSS Related Details	
2.1 Adjust GNSS Settings	12
2.2 Turn On Distance Trip	14
2.3 Use the GNSS Port Detector	
2.4 Access the NMEA Console	
2.5 Connect to NTRIP Service	
3 View Live GNSS Information	
3.1 Position Diagnostics	21
3.2 Configuration Diagnostics	
3.3 Skyplot Diagnostics	24
3.4 NMEA Console Diagnostics	24
3.5 Alerts	
4 Create the AB Line	
5 Export GNSS Harvest Data	
6 Define Research Boundaries with Field Layout	
7 Harvest with the GNSS Attachment	
7.1 Countdown Timer	
8 Take Notes with the GNSS Plugin	
8.1 Take Notes	41
9 The Backup Log	

CHAPTER 1

Install the GNSS Plugin

1 Install the GNSS Plugin

The Mirus GNSS plugin allows you to apply geospatial technology to a variety of field research programs like field mapping, plot measurement, data collection, and plot navigation. The plugin can be used within Mirus to enhance your research notes or map out your research sections within larger fields. Alternatively, when a GrainGage is connected, the plugin can be used as an attachment in Mirus to add GNSS locations to your harvest data.

1.1 Requirements for GNSS Plugin 2.1.1 or Later

- Mirus 4.6.3 or later
- Mapping or Survey grade GNSS receiver connected to a tablet running Mirus through a serial port or USB port

Note: The accuracy of the points in your maps is dependent on the accuracy of the GNSS receiver.

The Alvo Field Applicator plugin version 2.0.1 requires Mirus 4.6.3 and GNSS plugin 2.1.1. GNSS plugin version 2.0.0 is compatible with Mirus 4.2.3 or later.

1.2 Activate the GNSS Plugin

After you have purchased a license for GNSS plugin,

- 1. Go to https://www.harvestmaster.com/support/article/14648.
- 2. Tap the download icon 差 for GNSS Attachment.

The files automatically download.

- 3. Tap the file ل GnssAttachment-2.0.0.mpb to install the plugin.
- 4. Follow the installation instructions.
- 5. When you see the Mirus Plugin Manager Activate GNSS Plugin screen, select **Activate online** or **Activate over phone**. In either case, you will need to provide the serial number from your registration card. The registration card was mailed to you when you purchased the GNSS plugin.

If you choose to activate online, first tap **Activate Over Phone** and write down the registration number displayed.

- 6. HarvestMaster will send the unlock code via email.
- 7. Return to the Activate GNSS Attachment screen and input the unlock code.

1.3 Connect Your Receiver

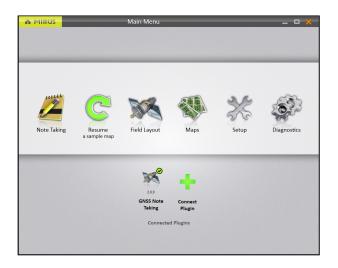
- 1. Double tap the Mirus icon \swarrow on your Windows desktop. Mirus opens the Main Menu screen.
- 2. Disconnect any plugins.
- 3. Tap Setup.

4. Scroll and tap **GNSS Attachment** (if you will be using with a GrainGage, Alvo Field Applicator, or Cone Planter) or **GNSS Note Taking** (if you will be using without a GrainGage).

		Se	tup		_ C	ר א	
		Device	Utilities				
Generic Sub-Sampler	>						
GNSS Attachment	>		Device	Utilities			
GNSS Note Taking	>						
Single BDS HiCap	>		e la	5			
			4				
				\$ \$	*		
		0	-	-			
		C	•••	~			
Preferer	nces	Traits	Devices	About			

5. Follow the instructions in <u>Use the GNSS Port Detector</u>.

1.4 Connect the GNSS Plugin


On the Home screen,

1. Tap Connect Plugin.

When you connect the GNSS plugin in Mirus:

- Choose **Attachments** when you have a GrainGage, Alvo Field Applicator, or Cone Planter connected and want to use the GNSS locations with harvest applications.
- Choose **Devices** when you do not need the GrainGage, Alvo Field Applicator, or Cone Planter to complete your task, such as recording research notes or laying out a research section within a larger field.

Once the plugin is activated, you will see it on the Main Menu screen with a green check mark.

GNSS Note Taking


GNSS Attachment

1.4.1 Add the GNSS Plugin to Mirus as an Attachment

1. Open Mirus.

2. Tap Connect Plugin.

Note: You must have a GrainGage plugin connected.

3. Tap Attachments.



4. Tap GNSS Attachment.

5. Tap the check icon 🤣.

6. Return to the Main Menu. The GNSS Attachment is displayed with a green check mark.


1.4.2 Add the GNSS Plugin to Mirus as a Device

- 1. Open Mirus.
- 2. Tap **Connect Plugin**. Note: You cannot have a GrainGage connected.
- 3. Tap **Devices**.

4. Tap GNSS Note Taking.

5. Tap the check icon 🤣.

6. Return to the Main Menu. GNSS Note Taking is displayed with a green check mark, and Field Layout is added to the menu items.

	Main Menu	_ 0 🗙
Note Taking	Resume a sample map	Diagnostics
	2.00 GNSS Note Taking Connect Plugin Connected Plugins	

CHAPTER 2

Adjust GNSS Related Details

2 Adjust GNSS Related Details

Whether you use the GNSS plugin to add location details to your harvest data with the GNSS Attachment or to take notes with the GNSS Note Taking device, each category includes a variety of settings that you can modify.

On the Home screen,

1. Tap Setup.

2. On the Setup screen, tap GNSS Attachment or GNSS Note Taking.

Setup

GNSS Note Taking

_ 0

*

?

About

GNSS Note Taking

GNSS Attachment

GNSS Note Taking

2.1 Adjust GNSS Settings

On the Setup > GNSS Attachment or GNSS Note Taking screen,

- 1. Tap GNSS Settings.
- 2. Configure the GNSS Settings as desired.

n MIRUS		Setup	>
	GNSS	Note Taking	
-			
GNSS Settings	Baud Rate	Front/Back Offset	Left/Right Offset
GNSS Port Detector		0	0
NMEA Console		feet	inches
NTRIP	Orescription	Oescription	Description
	Port Name	Receiver Type	
		Generic	
	Description	Description	
	· · ·		
			# 🔨 🖷
	=		
	S C	2 ?	

GNSS Attachment

GNSS Note Taking

The following table explains the details you can control from the **GNSS Settings** screen.

GNSS Settings Screen	
Setting	Description and Options
Additional Trip Ac- tion*	 Set up an additional action performed for an event. None—Operate normally. Remote Enter—Mirus adds an enter key press when the combine arrives at the end plot position, so that the operator does not have to manually press the enter to end the plot. Warn Missed Cycle—Mirus displays a message when an enter key press to end a plot has not been received despite arriving at the end of plot position.
Baud Rate	Define the communication speed, in bits per second, to be used with the serial port. The rate is automatically set when you run the port de- tection tool. (See <u>Use the GNSS Port Detector</u> .) To change the baud rate, select it from the dropdown list.
Collection Type*	 Define how or when the GNSS position(s) will be collected for a plot during harvest. Select Plot Events to collect the GNSS position(s) when each plot cycle occurs. Select Enter Press to collect GNSS positions for each plot, automatically or manually, with the Enter Press.
Communication Delay*	Under typical conditions GNSS signal, cable, and amplifier delays are negligible. However, if an operator wanted to compensate for a com- munication delay, this field allows that. The units of measure are in mil- liseconds.
Front/Back Offset	Enter the distance between the GNSS antenna and the reference point of the equipment. The reference, such as the deck plates of a corn

	head, seed tubes of a planter/drill, or boom 1 of sprayer. Use positive numbers for equipment placed in front of the GNSS antenna. Use neg- ative numbers for equipment located behind the GNSS antenna.
Left/Right Offset	Enter the distance between the GNSS antenna and the center line (lat- erally) of the equipment swath. Use positive numbers for equipment to the right of the antenna and negative numbers for equipment to the left of the antenna. Right and left are determined by the driver facing the direction of travel.
Port Name	See the port Mirus uses to make a serial connection to the GNSS re- ceiver. The port is set automatically by the GNSS Port Detector. (See <u>Use the GNSS Port Detector</u> .)
Receiver Type	Set the receiver type to Performance NMEA for optimal results.
Trip Origin*	Set the trip origin to Offset Position for normal operation. Mirus will record the beginning of a trip or trip point if using distance trip when the GNSS receiver crosses the point identified in the center of the alley. With Offset Position, Mirus will begin the trip when the at- tachment (such as, cone planter, sprayer head, combine cutter bar) crosses the center of the alley or trip point if using distance trip. With the Antenna setting, Mirus will begin the trip when the antenna of the GNSS receiver crosses the center of the alley or trip point if using distance trip.

*GNSS Attachment only

2.2 Turn On Distance Trip

The Distance Trip screen is only available with harvest applications using the GNSS Attachment. You will not see this option if you are taking notes.

On the Setup > GNSS Attachment screen,

1. Tap Distance Trip.

Mirus opens the Distance Trip screen. Enable **Distance Tripping** and configure **Trip Distance**, if needed.

	IRUS Setup 🗕 🕻							
GNSS Attachment								
-	GNSS Attachment							
GNSS Settings	Distance Tripping							
Distance Trip	No							
GNSS Port Detector	⊘ Description	-						
NMEA Console								
NTRIP	Trip Distance							
	O							
	 Description 	-						
	* *							
	G . 3							
	C H ?							
Preferences	Traits Devices About							

Note: When using a GrainGage, set the trip distance to trip before the trip point of the Grain-Gage. This will ensure an accurate weight per distance measurement.

The following table explains the Distance Trip settings.

Distance Trip Screen	
Setting	Description and Options
Distance Tripping	By default, Distance Tripping is set to "No". When set to "Yes," Mirus will start a new cycle after the GrainGage has traveled a specific distance. Each cycle will record the GNSS location. Use Distance Tripping to trigger a cycle using the GNSS attachment and position data while in Strip Mode.
Trip Distance	Enter the distance that the combine will travel before the new cycle begins. (Distance Tripping must be set to "Yes.")

2.3 Use the GNSS Port Detector

The GNSS Port Detector will automatically detect the serial COM port used by the attached GNSS receiver to transmit NMEA data.

On the Setup > GNSS Attachment or GNSS Note Taking screen,

1. Tap GNSS Port Detector > COM Port Detection.

Mirus opens the GNSS Port Detection box and detects the ports.

When the COM port detection is completed, you will see the name of each port, its availability, the baud rate through each port, and the status of NMEA messages. The port in use is indicated by the selected radio button.

If you want to use a different port,

2. Select a port for the receiver to use.

Note: The first time you use the GNSS plugin, you will select the receiver that you want to use.

3. Tap the check icon 📀 to apply the selected port.

n Mir	us			Setup ((Emulated Mode)	
				GNS	S Attachment	
4						
GNSS Sett	-	-	_	GNSS	5 Port Detection 🛛 🗙	
Distance T		Ports	Available	Baud	Status	
GNSS Port	0	COM6	\odot	4800	FAILED - No NMEA strings detected	
NMEA Co	0	COM7	8	4800	FAILED - No NMEA strings detected	
NTRIP	0	COM5	8	4800	FAILED - No NMEA strings detected	
	0	СОМЗ	Ø	115200	FAILED - No NMEA strings detected	
	0	COM4	8	115200	FAILED - No NMEA strings detected	
	0	COM11	8	115200	FAILED - No NMEA strings detected	
	۲	COM8	Ø	4800	SUCCESS - NMEA found at 4800 baud	
	0	COM9	\bigcirc	4800	FAILED - No NMEA strings detected	
	2				0	
			R		2 🗖 ?	
			Preferences	Trai	ts Devices About	

2.4 Access the NMEA Console

You can view the incoming NMEA messages from the NMEA Console screen.

On the Setup > GNSS Attachment or GNSS Note Taking screen,

1. Tap NMEA Console.

Mirus displays the NMEA Console.

NSS Settings	Show Timestamp Steptors, 5111576 04 4145 00 2020511 N 111 48 7122 00204 W/2 05 15 01 M 01 M 243	🛃 Auto
NSS Port Detector	\$GPG5A,A.307,02,26,27,09,04,15,,.18,1.0,1.5*13 \$GPVTG.0.00.T.0.00.M.0.54.N.1.20.X*4E	
MEA Console	\$GPGGA,11132613,4145,082026431,N,11148,712709204,W,2,05,1.5,0,M,0,M,,*45 \$GPGSA,A,307,02,26,27,09,04,15,,1,8,1,0,1,5*13	
(TRP	SGPVTG.0007.1000Ad.54AL.100.74E SGP0TG.0007.1000Ad.54AL.100.74E SGP0TG.0007.000Ad.54AL.100.74E	
		- Send C

Use the text entry field to send commands or messages to the GNSS receiver. For a comprehensive list of commands and messages that can be used to configure your GNSS receiver, please refer to the technical documentation provided by the manufacturer of the receiver.

There are two commands available from the dropdown menu:

- HIDE LOG will cause the incoming messages to stop being displayed and clear your screen making it easy to see the response to a message.
- SHOW LOG will display the incoming messages.

2.5 Connect to NTRIP Service

NTRIP (Networked Transport of RTCM via Internet Protocol) is used to increase the accuracy of GNSS positioning. It uses the internet to fine tune positioning by comparing the known location of a base station with the moving location of a rover. Using an NTRIP service will allow you to achieve a much higher level of accuracy in your GNSS locations.

If you have a subscription with an NTRIP service, use the NTRIP screen to enter the address, port, and credentials necessary to connect to the NTRIP caster.

On the Setup > GNSS Attachment or GNSS Note Taking screen,

- 1. Tap NTRIP.
- 2. Enter your service provider information.
- 3. Tap Start NTRIP.

Note: To begin NTRIP every time Mirus starts, select the **Automatically start NTRIP** *checkbox.*

	Setup 🗕 🗖 🗙						
GNSS Attachment							
-	GNSS Attachment						
GNSS Settings	Caster Address						
Distance Trip							
GNSS Port Detector	Port						
NMEA Console	0						
NTRIP	Username						
	Password						
	Mount Point						
	Send GGA						
	Automatically Start NTRIP						
	Start NTRIP						
	* ~ E						
	È 🖳 ?						
Preferences Tra	aits Devices About						

CHAPTER 3

View Live GNSS Information

3 View Live GNSS Information

You can see the live information being reported by the receiver from the Diagnostics screen.

To access the Diagnostics screen from the Main Menu screen,

1. Tap **Diagnostics**.

Mirus opens the Diagnostics box.

2. If you are using the GNSS attachment, select **GNSS Attachment** from the dropdown list. *Note: If you are using the Note Taking device, you will skip this step.*

Diagnostics	×
Y H2 GrainGage	¥
🕅 GNSS Attachment	
Y H2 GrainGage	
weight Sensor mite lest weight Lever Detect nearth Actuators	
W/-!-h- 17	0

3.1 Position Diagnostics

On the Position Diagnostics screen, the position is shown live.

Source Attachment			
Position Configuration	sky Plot	NMEA Console	
Current L	ocation		
Altitude		4464.	393 ft
Average Clock Offset		28.1 ms	
Effective Update Rate			6.7 Hz
Fix Quality	1	[DGPS
Fix Туре			3D
Heading		1	50.3 °
Latitude		41.7630	8649
Longitude		-111.86187	1165
Offset Latitude		41.76308	9737
Offset Longitude		-111.86184	9555
Receiver Update Rate			10 Hz

Position Diagnostics

ltem	Description
Altitude*	The vertical elevation of your GNSS receiver above sea level.
Average Clock Off- set	The measurement of the synchronization error between the satellite's autonomous clock and the receiver's clock.
Effective Update Rate	The rate at which the GNSS receiver is updating its position.
Fix Quality	 The type of positioning data being used by the receiver to determine the location. SPS is the standard GPS positioning and timing data. DGPS (Differential GPS) uses fixed ground locations in addition to satellite provided positioning data. RTK (Real Time Kinetic) corrections are provided by a single reference station. FRTK (Float Real Time Kinetic) skips the initialization phase of the RTK providing greater speed but less accuracy.
Fix Type	 The type of reference points (and calculations) being used to determine the position. 3D uses four or more satellite to determine locations and altitude.

 2D uses fewer than four satellites to determine locations and alti- tude. 		
Heading*	The compass direction you are driving. It is measured in degrees from the north magnetic pole.	
Latitude*	The coordinate that specifies your north-south position on the Earth.	
Longitude*	The coordinate that specifies your east-west position on the Earth.	
Offset Latitude*	The latitude with offsets applied at the time the GrainGage cycle started (after the countdown time) when Distance Tripping is turned off.	
Offset Longitude*	The longitude with offsets applied at the time the GrainGage cycle started (after the countdown time) when Distance Tripping is turned off.	
Receiver Update Rate	The frequency at which the GNSS receiver calculates and reports its po- sition.	
Satellites in Fix The number of satellites the receiver is using to calculate the position.		
Speed* The rate the GNSS receiver is traveling.		
Threshold Head- ing	The last heading received above the speed threshold.	
	Accuracy	
-	S satellites in the sky affects the accuracy of the location(s) reported by The following values can help to ascertain greater positional precision.	
ЕНЕ	Estimated Horizontal Error is provided by your GNSS receiver based on the number of reliable connections to GNSS satellites.	
	Horizontal Dilution of Precision	
HDOP A value between 1 – 20. One is an ideal connection. Ten is a moderate connection. Twenty is a poor connection.		
	Position (3D) Dilution of Precision	
PDOP	A value between 1 – 20. One is an ideal connection. Ten is a moderate connection. Twenty is a poor connection.	
	Vertical Dilution of Precision	
VDOP	A value between 1 – 20. One is an ideal connection. Ten is a moderate connection. Twenty is a poor connection.	

*Also in the backup log

3.2 Configuration Diagnostics

The Configuration Diagnostics screen, shows the currently applied values.

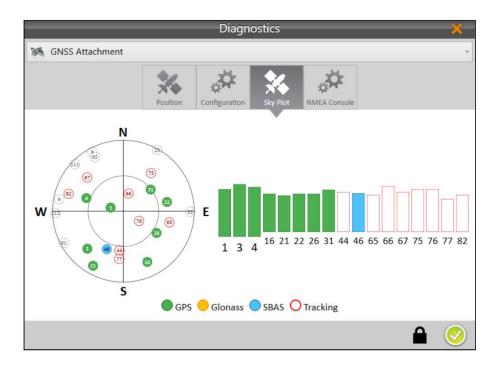
_	_	Diagno	ostics	_	×
GNSS No	te Taking				
	Position	Configuration	Sky Plot	NMEA Console	
		GNSS Confi	gurations		
Alley Lengt	n				0 ft
Front/Back	Offset				0 ft
Left/Right C	Offset				0 in
Plot Length					0 ft
Plot Width					0 in
Plots Per St	ack				0
Port Name					
Stack Alley	Length				0 ft
Stacked Plo	ts				No
					

	*	, ‡	X	- D	
	Position	Configuration	Sky Plot	NMEA Console	
lley Leng	gth				0.01 ft
ollection	Туре			Plot E	vents
ommuni	cation Delay	1			20 ms
ront/Bac	k Offset				6 ft
eft/Right	Offset				3 in
lot Lengt	:h			53	4.02 ft
lot Widt	h				60 in
lots Per	Stack				0
ort Nam	e			(COM8
tack Alle	y Length				0 ft
tacked P	lots				No
racking P	lot Position				No

GNSS Note Taking

GNSS Attachment

Configuration Diagnostics		
ltem	Description	
Alley Length	The length of the empty space where there are no plants between two plots. Enter this value in the AB Line Wizard for field dimensions. See <u>Step 3 of Countdown Timer</u> .	
Collection Type*	The method, a plot event or enter press trigger, used to start the flush cycle of the GrainGage. See <u>Adjust GNSS Settings</u> .	
Communication De- lay*	Under typical conditions GNSS signal, cable, and amplifier delays are negligible. However, if an operator wanted to compensate for a communication delay, this field allows that. It is measured in milliseconds.	
Front/Back Offset*	The value you entered as your front/back offset. (See <u>Turn on Distance</u> <u>Trip</u> .) The default value is 0.	
Plot Length	The value you entered in the AB Line Wizard for plot length. See <u>Step</u> <u>3 of Countdown Timer</u> .	
Plot Width*	The value you entered in the AB Line Wizard for plot width. See <u>Step 3</u> of Countdown Timer.	
Plots per Stack	The number of plots grouped together to make one stack. Only used when Stacked Plots is on. See <u>Step 3 of Countdown Timer</u> .	
Port Name	The port used by Mirus to make a serial connection to the GNSS re- ceiver. The port is set automatically by the GNSS Port Detector. See <u>Use the GNSS Port Detector</u> .	
Stack Alley Length	The longer distance between a group of stacked plots. See <u>Step 3 of</u> <u>Countdown Timer</u> .	
Stacked Plots	Several plots grouped together. See <u>Step 3 of Countdown Timer</u> .	


Tracking Plot Posi-
tion*A record of the averaged plot position is kept when "Yes" is displayed.It is not recorded when "No" is displayed.

*GNSS Attachment only

3.3 Skyplot Diagnostics

The Sky Plot Diagnostics screen shows the satellites used in the positioning solution and where they are in the sky.

On the Skyplot page, each satellite is identified by a space vehicle number (SVN) and color for its constellation. The location of each satellite on the Skyplot indicates where it resides in the sky overhead relative to true north. The outside ring is 0° elevation (horizon). The inside ring is 45° elevation—halfway above the horizon from the Geode's present location. The intersection of the two lines indicates directly overhead.

3.4 NMEA Console Diagnostics

The NMEA Console is explained in Access the NMEA Console.

3.5 Alerts

When the fix type changes, you will see a green notification message for a good fix and yellow for a poor fix.

CHAPTER 4

Create the AB Line

4 Create the AB Line

You can use the GNSS receiver to provide real world reference locations for Mirus to use in creating the map of your field. Mirus creates a map based on a reference line called the AB Line. Follow the steps below to create an AB Line that corresponds to one side of your physical field.

On the Maps screen,

- 1. Select a map.
- 2. Tap **AB Line**.

Map With GNSS Attachment	
Created: 5/4/2020 12:45:03 PM Location: C:\HarvestMaster\Mirus\Maps\Map With GNSS Attachment\Map With GNSS Attachment.hmf Ranges Deep: 10 Rows Wide 10	$= 10 \rightarrow 10$
Harvest	AB Line

3. In the AB Line Wizard, tap **New AB Line**.

Note: If you want to edit an existing line, select **Existing AB Line** and then select the map file that contains the AB Line you want to copy.

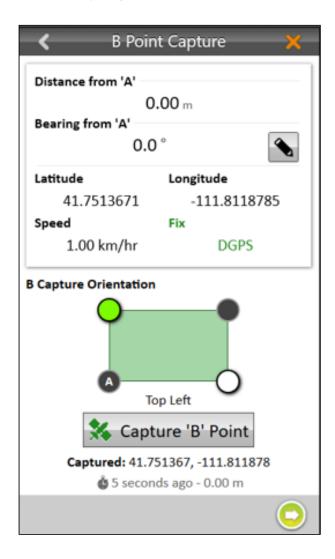
AB Line Wizard 🛛 🗙
New AB Line
Evicting AP Line
Existing AB Line

3. Set the plot dimensions.

AB Line Wizard 🛛 🗙
Plot Dimensions
Alley Length (ft)
1.5
Plot Length (ft)
20
Row Width (in)
30
Rows Per Plot
2
Stacked Plots
\bigcirc

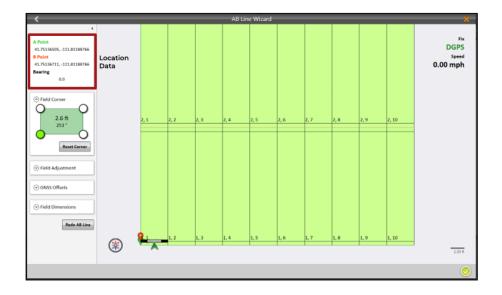
- **Alley Length**—The alley is the empty space between ranges. *Note: The minimum Alley Length is 0.1 ft, which creates a field with no alley.*
- **Plot Length**—The length of the space allotted for the plants to grow.
- **Row Width**—The width of the space allotted for each row of plants to grow.
- **Rows Per Plot**—The number of plant rows to be grouped together to create a plot. *Note: The row width and rows per plot should equal the effective swath width.*
- **Stacked Plots**—A group of plots separated from other plot groups by a larger alley. This option defines a longer alley after a specific number of smaller alleys between plots. If you are using stacked plots, turn on **Stacked Plots** and define the number of plots per stack and the stack alley width.
- 4. Tap the next arrow 🔿.
- 5. Move your GNSS receiver to the location you want displayed in Mirus as the lower left corner of the field. When using the GNSS attachment with a GrainGage and the correct offsets entered, position your combine in front of the first plot with the first plant contacting the cutter bar or deck plates.
- 6. In Mirus, tap **Capture 'A' Point**.

Note: You can manually edit the latitude and longitude of the 'A' point before capturing it.


K A Po	oint Capture 🛛 🗙
Latitude 41.7513671 Speed 1.00 km/hr	Longitude -111.8118785 Fix DGPS
Captured: 41.	Bottom Left pture 'A' Point 7513671, -111.8118785 conds ago - 0.00 m
	\bigcirc

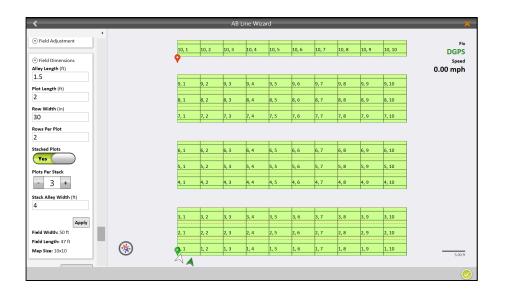
- 7. Tap the next arrow 🔿.
- 8. Move your GNSS receiver to the location you want displayed in Mirus as the upper left corner of the field. For example, position your combine, pointing the same direction, at the end of the first row of the first plot with the last plant touching the cutter bar or deck plates.

Note: If it is not feasible to drive exactly along your row as you would to harvest, you can drive the combine parallel to your row to the side of the plot, and then reset the corner(s) using an offset distance in Mirus once the AB Line has been created.


- 9. To improve the accuracy of the map with the AB Line you are defining,
 - Drive the entire length of the field between capturing the 'A' and 'B' points.
 - Use the pencil button to enter the distance from your first corner A and the bearing in degrees from A to B.

10. In Mirus tap Capture 'B' Point.

11. Tap the next arrow 🔿.


Mirus will display the Map View of the field calculated from the AB Line.

All of the field parameters are displayed on the left side of the screen. Several of them can be edited from there.

AB Line Wizard Final Screen		
Setting	Description and Options	
A Point B Point Bearing	View the A and B coordinates and the bearing entered.	
Field Corner	Reset the corner to re-position the AB line based on your new posi- tion.	
Field Adjustment	Change the vertical or horizontal width of your field.	
GNSS Offsets	View the currently set offsets. To change them, use the directions in <u>Adjust the GNSS Settings</u> .	
Field Dimensions	Adjust the Alley Length, Plot Length, Row Width, Rows Per Plot, and choose Stacked Plots.	
Redo AB Line	Recapture the AB Line.	

The following Map View shows a field of stacked plots where groups of three plots are separated by a 4-foot stack alley. Within each group, the three plots are separated by 1.5 foot wide alleys.

CHAPTER 5

Export GNSS Harvest Data

5 Export GNSS Harvest Data

The map export utility in Mirus automatically includes all of the GNSS traits with the weight, moisture, and test weight data. You do not need to take any additional actions after harvest to include the GNSS data.

To export data, see the Export Map Data section in the appropriate Mirus user's guide.

If needed, turn on Advanced and select the Include Cycle Data checkbox.

Export - GN	VSS Map
Data Output Folder	
C:\HarvestMaster\Mirus\Exports\GNSS Map.csv	Browse
Identifiers	▼ 4
Range,Row	
Traits	Advanced On
Ó Moisture	1
王 Test Weight	
🛠 Offset Latitude	
🛠 Offset Longitude	
🗱 Position	
🛠 AB Bottom Left Latitude	
🛠 AB Bottom Left Longitude	
Include Cycle data	□ Select All

Exported data is in CSV format, so it can easily be viewed in Excel and imported into analysis software such as AgroBase or Prism.

The following is an example of the exported data with GNSS data for each cycle.

Date/ Time	Range	Row	Cy- cle	Weight	Mois- ture	Offset Lati- tude	Offset Lon- gitude	Position	Har- vest Se- quence
07/12/2019 13:57	1	1	Т	27.33	1.3	41.76216494	-111.8622119	41.762163827, -111.862199761	1
7/12/2019 13:57	1	1	1	5:09	1.27	41.7621345	-111.8619736	41.762137287, -111.861959814	1
7/12/2019 14:03	1	2	т	17.67	1.41	41.76216074	-111.8620596	41.762161798, -111.862071770	2
7/12/2019 14:03	1	2	1	3.1	1.41	41.76218637	-111.8622635	41.762183296, -111.862277148	2
7/12/2019 14:07	1	3	т	29.46	2.72	41.76218322	-111.8621941	41.762181990, -111.862182028	3
7/12/2019 14:07	1	3	1	5:08	2.72	41.76215117	-111.8619635	41.762155624, -111.861950547	3

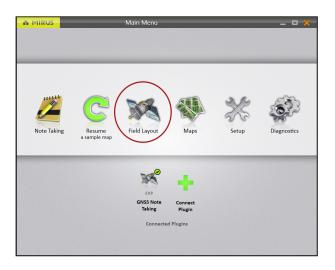
CHAPTER 6

Define Research Boundaries with Field Layout

6 Define Research Boundaries with Field Layout

Note: The Field Layout menu option is only available when the GNSS plugin is connected to Mirus as the GNSS Note Taking device.

Field Layout is designed to assist researchers in defining the location of a research section within a larger field. Field Layout combines your width and length measurements and GNSS locations to generate a field layout map. Use the field layout map to navigate to each corner of the research section, so it can be physically marked.

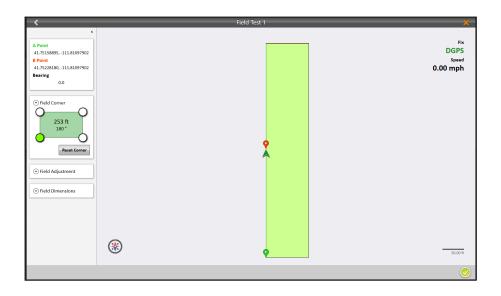

Field Layout can measure distance between any two points to verify location and accuracy. Once a field map has been generated, Field Layout creates individual plots within the defined field boundary.

When necessary, you can offset the field layout so that the base line of a field can be projected a set distance from a known boundary such as a road or fence.

Note: The accuracy of the defined field layout is determined by the accuracy of the GNSS receiver.

On the Mirus Main Menu screen,

1. Tap Field Layout.


If you have not previously defined a field layout, Mirus will display the AB capture box.

If you have previously defined a field layout, Mirus will display the last field layout that was used as well as any other defined field layouts.

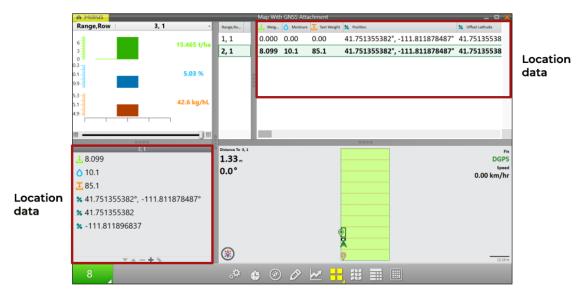
- 2. Name the map and enter the width and length of your field.
- 3. Tap the next arrow 🔿.
- 4. Capture the AB Line. See Create the AB Line.

Mirus displays field layout in Map View.

If you were moving along the road when capturing the GNSS corner locations, use the Field Adjustment dropdown to move your captured locations into the field.

Place physical field markers corresponding to your field layout to identify the research area.

Note: Field layout maps are accessed from Field Layout on the Main Menu screen, not the Map menu item.



CHAPTER 7

Harvest with the GNSS Attachment

7 Harvest with the GNSS Attachment


When Mirus is connected to the GNSS Plugin Attachment, the location will be displayed with the cycle data on the Harvest screen as your combine moves through the field. Data collection will begin as you harvest. For directions on using Mirus to harvest, refer to the Harvest Mode section in the appropriate <u>Mirus user's guide</u>.

When harvesting, ensure the GrainGage has completed cycling before you arrive at the next trip point. If you drive too fast, you will loose some GNSS data points on the trip. To approximate how fast you are driving, divide the Trip Distance by the cycle time (the time between the isolation door closing and opening) of the GrainGage.

Speed Estimates Examples							
Trip Distance	Average Cycle Time	Estimated Speed					
10 ft	8 seconds	1.25 ft/sec or 0.85 mph					
10 ft	7 seconds	1.43 ft/sec or 0.975 mph					

In the Quad View, you can see the combine location, GNSS speed, and distance traveled. For an explanation and instructions on configuring the Quad View, refer to the appropriate <u>Mirus user's</u> <u>guide</u>.

7.1 Countdown Timer

The distance trip feature harvests with the countdown timer. (For directions refer to the Harvest with Countdown Timer section in the appropriate <u>Mirus user's guide</u>.)

For positioning the harvested data correctly in the field, the countdown timer in Mirus must be synced with your combine.

To sync the countdown timer with your GrainGage,

- 1. Harvest a short distance.
- 2. Stop.
- 3. Time how long it takes for all of the grain to arrive in the GrainGage.

Note: If the timer is too short, not all of the grain from the preset distance will be in the Grain-Gage. If the timer is too long, data from the next distance trip will be mixed in with the data collected from the previous trip.

To see the system cycles and data collection, set your Quad View to display Cycle Data, Field, Info, and Diagnostics screens.

On the Field screen,

- Tap **Distance to Next Trip** to see the distance to next trip.
- Tap the distance and bearing numbers to toggle between seeing the distance to the end of the plot where the flush cycle will occur and the distance to the next/previous plot.
- Use the pause button when you need to turn around or back up.

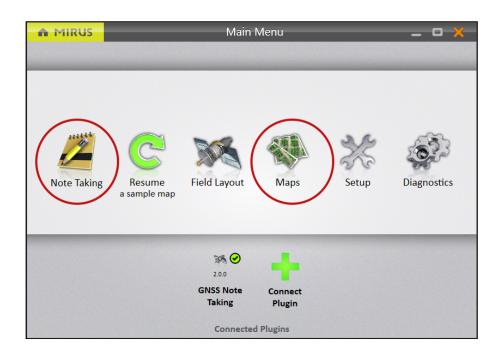
On the Diagnostics screen, select **GNSS Attachment**. Use the Next Trip Distance to count down to the next trip point so that you can stop at your intended trip distance.

CHAPTER 8

Take Notes with the GNSS Plugin

8 Take Notes with the GNSS Plugin

The GNSS Note Taking Device only needs to be enabled if you are using it while taking Mirus Notes. The GNSS Note Taking Device is not used with the harvest applications. To connect the device, follow the directions Install the GNSS Plugin.


8.1 Take Notes

Note Taking requires a map. There are two ways to choose the map to take notes with the GNSS plugin,

- Tap Note Taking.
- Pick the map to use.

Or

- Tap Maps.
- Pick the map to use.
- Tap Note Taking.

Note: On the Main Menu, tap **Resume** to continue with the map and notes you were using last.

- 1. Enter the starting location.
- 2. Select the direction.

3. Choose the navigation type.

Note Taking Setup								
1. What is your starting location - 1 + - 1 + Range Row								
2. Select a direction	3. Choose Navigation Type							
	<u> </u>							

- 4. Tap the next arrow 🔿.
- 5. Enter the number of observers.
- 6. Choose the collection order (plot or trait). Notes are most often taken according to trait. Increasing the number of observers will cause Mirus to display additional spaces to enter your notes.

Note Taking Setup	-X -
Number of Observers	
- 1 +	
Collection Order	
Plot Trait	
	\bigcirc

7. Tap the next arrow 🔿.

8. Tap all the trait(s) you want to record notes about. Previously defined traits will be listed. Use the plus button to add new traits.

	Select Traits	×
flowering		
height		
lodge		
+		\bigcirc

Note: For more information, see the Create and Record Traits section in the appropriate <u>Mirus user's guide</u>.

9. Tap the check icon 🔗 to see the Observation screen.

You will see the selected trait(s) with space to enter your notes. Use the ten key to enter your note. Once you enter a value, the cursor will move to the next trait or plot.

MIRU:	5					_ O X
Clear	$\langle \times \rangle$	+	+	F1	Range,Ro Plot	🗱 Offset Latitu 🐮 Offset Longitude 💥 PositL 🤶 flowerL 🤶 heig 🤶 lodge
7	8	9	+	F2		0.00
4	5	6	ŧ	F3		
1	2	3		F4		0000
			Cates		Range,Row	1, 1
(0		Enter	F5	flowering Date (1)	Select a date
		⊕ €	Range,Row	RI B, 4	Date (1)	
8, 1	L		Range, Row	RU B, 4		
7, 1	ι	7, 2	7, 3	7,4		
6, 1	L I	6, 2	6, 3	6, 4	C height Number (2)	
5, 1	L I	5, 2	5, 3	5, 4	Number (2)	·
4, 1	ı	4, 2	4, 3	4, 4		
3, 1	ι –	3, 2	3, 3	3, 4		
2, 1	ι –	2, 2	2, 3	2, 4	C lodge Number (1)	
1, 1	ι	1, 2	1, 3	1, 4		
					▼ ▲ - + %	1.1 🖧

When taking notes, the Quad View can be configured to show the ten key for quick data entry, the notes spaces for recording observations, the spatial view to orient your observa-

tion, and the field view to see your location.

ń	MI	RUS															- 1	
с	lear	$\langle \times$	+	→	F1		Range,Rov	_					1	, 1				
ľ	7	8	9	t	F2		flowering Date (1)		Selec	t a dat	e							15
	4	5	6	ŧ	F3		C height Number (2)											
							$\mathbf{\nabla} \mathbf{A} = \mathbf{I}$	•									1	,1 🗳
	1	2	3		F4					1	C	000						
	C)	•	Enter	F5	0	Distance to 1, 1 14.10 ft 28.4 °										C	Fix GPS
		P	Ð	6, 2	2	0000	28.4											_{Speed} mph
		Hill F	Range,F	low 5	1			2, 1	2, 2	2, 3	2, 4	2, 5	2,6	2,7	2, 8	2,9	2, 10	
		4, 1		4, 2	2													
		3, 1		3, 2	2													
		2, 1		2, 2	2													
		1, 1		1, 2	2			2,1	1, 2	1, 3	1, 4	1, 5	1, 6	1, 7	1, 8	1, 9	1, 10	
							()										5.00	ft
					¢	ž	<i>ک</i>											

CHAPTER 9

The Backup Log

9 The Backup Log

Mirus creates a backup log when you open a map for Harvest or Note Taking. The backup log will include GNSS information when you use the GNSS Attachment plugin.

Note: The backup log is a CSV file stored at C:\HarvestMaster\Mirus\Backups\.

The following fields apply to the GNSS Plugin.

Backup Log							
Field Name	Description						
Position	The location of the GNSS antenna at the time the GrainGage cycle started when Distance Tripping is disabled. No offsets are included in this value.						
Altitude	The vertical elevation of your GNSS receiver above sea level.						
Estimated Hori- zontal Error	Estimated accuracy of the GNSS position. Included only when the re- ceiver is configured to output either GST or RRE NMEA messages.						
Heading	The compass direction you are driving. It is measured in degrees from the north magnetic pole.						
Latitude	The coordinate that specifies your north-south position on the Earth.						
Longitude	Coordinate showing your east/west position on the Earth.						
Speed	The rate the GNSS receiver is traveling (km/h or mph).						
Offset Latitude Offset Longitude	When Distance Tripping is disabled, the location is the average coordi- nate position (adjusted for antenna offsets), calculated from plot entry to exit.						
AB Bottom Left Latitude AB Bottom Left Longitude	Coordinates of the bottom left corner of the plot as projected by the AB line. The values are not captured in real time by the GNSS receiver.						
Estimated Plot Po- sition	The letter and number indicating the range and row of the plot where the GNSS receiver is located at the time the position data was captured.						
Front/Back Offset	The value entered for the front/back offset for the GNSS antenna. The default value is 0. (See <u>Turn on Distance Trip</u> .)						
Left/Right Offset	The value entered for the left-right offset for the GNSS antenna. The default value is 0. (See <u>Adjust GNSS Settings</u> .)						
Plot Width	The value entered the AB line wizard for plot width. See <u>Step 3, Create</u> <u>the AB Line</u> .						
Trip Туре	The point where the system triggers the isolation door to close and starts the cycle.						

Distance from Last Trip	The distance traveled since the last trip point.
Trip Latitude Trip Longitude	When Distance Tripping is enabled, this value is the GNSS position cap- tured at the time the offset position crosses the trip interval boundary. Use these values when plotting a yield map.
Start Altitude	The vertical elevation of your GNSS receiver above sea level when your harvest began.
Start Heading	The direction of the compass when the harvest begins. It is measured in degrees from the north magnetic pole.
Start Latitude Start Longitude	 The starting coordinates of your position as determined according to the Plot Tracking Mode. Enter Press Mode captures the location at the previous enter press. Plot Event Mode captures the location when the GrainGage or planter finishes the plot.
Start Speed	The rate at which the GNSS receiver is traveling (or your combine is moving) at the beginning of the harvest (km/h or mph).
End Altitude	The vertical elevation of your GNSS receiver above sea level when the harvest ended.
End Heading	The compass direction you were driving when the harvest ended. Mea- sured in degrees from the north magnetic pole.
End Latitude End Longitude	 The ending coordinates of your position as determined by the Plot Tracking mode. Enter Press Mode captures the location at the previous enter press. Plot Event Mode captures the location when the GrainGage or planter finishes the plot.
End Speed	The rate at which the GNSS receiver is traveling (or your combine is moving) at the end of the harvest (km/h or mph).
Start Offset Lati- tude Start Offset Longi- tude	The coordinates (adjusted for antenna offsets) at the time the plot was entered. (See <u>Adjust GNSS Settings</u> .)
End Offset Lati- tude End Offset Longi- tude	The latitude and longitude coordinates (adjusted for antenna offsets) at the time the plot was exited. (See <u>Adjust GNSS Settings</u> .)